Intelligent Quotient


An intelligence quotient (IQ) is a total score derived from several standardized tests designed to assess human intelligence. The abbreviation "IQ" was coined by the psychologist William Sternfor the German term Intelligenzquotient, his term for a scoring method for intelligence tests at University of Breslau he advocated in a 1912 book. Historically, IQ is a score obtained by dividing a person's mental age score, obtained by administering an intelligence test, by the person's chronological age, both expressed in terms of years and months. The resulting fraction is multiplied by 100 to obtain the IQ score. When current IQ tests were developed, the median raw score of the norming sample is defined as IQ 100 and scores each standard deviation (SD) up or down are defined as 15 IQ points greater or less,although this was not always so historically. By this definition, approximately two-thirds of the population scores are between IQ 85 and IQ 115. About 2.5 percent of the population scores above 130, and 2.5 percent below 70.


Scores from intelligence tests are estimates of intelligence. Unlike, for example, distance and mass, a concrete measure of intelligence cannot be achieved given the abstract nature of the concept of "intelligence".IQ scores have been shown to be associated with such factors as morbidity and mortality, parental social status, and, to a substantial degree, biological parental IQ. While the heritability of IQ has been investigated for nearly a century, there is still debate about the significance of heritability estimates and the mechanisms of inheritance.
IQ scores are used for educational placement, assessment of intellectual disability, and evaluating job applicants. Even when students improve their scores on standardized tests, they do not always improve their cognitive abilities, such as memory, attention and speed. In research contexts they have been studied as predictors of job performance, and income. They are also used to study distributions of psychometric intelligence in populations and the correlations between it and other variables. Raw scores on IQ tests for many populations have been rising at an average rate that scales to three IQ points per decade since the early 20th century, a phenomenon called the Flynn effect. Investigation of different patterns of increases in subtest scores can also inform current research on human intelligence.

AGE
IQ can change to some degree over the course of childhood.However, in one longitudinal study, the mean IQ scores of tests at ages 17 and 18 were correlated at r=0.86 with the mean scores of tests at ages five, six, and seven and at r=0.96 with the mean scores of tests at ages 11, 12, and 13.















For decades, practitioners' handbooks and textbooks on IQ testing have reported IQ declines with age after the beginning of adulthood. However, later researchers pointed out this phenomenon is related to the Flynn effect and is in part a cohort effect rather than a true aging effect. A variety of studies of IQ and aging have been conducted since the norming of the first Wechsler Intelligence Scale drew attention to IQ differences in different age groups of adults. Current consensus is that fluid intelligence generally declines with age after early adulthood, while crystallized intelligence remains intact. Both cohort effects (the birth year of the test-takers) and practice effects (test-takers taking the same form of IQ test more than once) must be controlled to gain accurate data. It is unclear whether any lifestyle intervention can preserve fluid intelligence into older ages.
The exact peak age of fluid intelligence or crystallized intelligence remains elusive. Cross-sectional studies usually show that especially fluid intelligence peaks at a relatively young age (often in the early adulthood) while longitudinal data mostly show that intelligence is stable until mid-adulthood or later. Subsequently, intelligence seems to decline slowly.
Genetics and environment
Environmental and genetic factors play a role in determining IQ. Their relative importance has been the subject of much research and debate.

HeritabilityEdit

The general figure for the heritability of IQ, according to an authoritative American Psychological Association report, is 0.45 for children, and rises to around 0.75 for late adolescents and adults. Heritability measures in infancy are as low as 0.2, around 0.4 in middle childhood, and as high as 0.9 in adulthood. One proposed explanation is that people with different genes tend to reinforce the effects of those genes, for example by seeking out different environments.

Shared family environmentEdit

Family members have aspects of environments in common (for example, characteristics of the home). This shared family environment accounts for 0.25–0.35 of the variation in IQ in childhood. By late adolescence, it is quite low (zero in some studies). The effect for several other psychological traits is similar. These studies have not looked at the effects of such extreme environments, such as in abusive families.

Non-shared family environment and environment outside the familyEdit

Although parents treat their children differently, such differential treatment explains only a small amount of nonshared environmental influence. One suggestion is that children react differently to the same environment because of different genes. More likely influences may be the impact of peers and other experiences outside the family.

Individual genesEdit

A very large proportion of the over 17,000 human genes are thought to have an effect on the development and functionality of the brain.While a number of individual genes have been reported to be associated with IQ, none have a strong effect. Deary and colleagues (2009) reported that no finding of a strong single gene effect on IQ has been replicated.Recent findings of gene associations with normally varying intelligence differences in adults continue to show weak effects for any one gene; likewise in children, but see.

Gene-environment interactionEdit

David Rowe reported an interaction of genetic effects with socioeconomic status, such that the heritability was high in high-SES families, but much lower in low-SES families. In the US, this has been replicated in infants, children, adolescents and adults.Outside the US, studies show no link between heritability and SES.Some effects may even reverse sign outside the US.
Dickens and Flynn (2001) have argued that genes for high IQ initiate an environment-shaping feedback cycle, with genetic effects causing bright children to seek out more stimulating environments that then further increase their IQ. In Dickens' model, environment effects are modeled as decaying over time. In this model, the Flynn effect can be explained by an increase in environmental stimulation independent of it being sought out by individuals. The authors suggest that programs aiming to increase IQ would be most likely to produce long-term IQ gains if they enduringly raised children's drive to seek out cognitively demanding experiences.


Music

Musical training in childhood has been found to correlate with higher than average IQ.It is popularly thought that listening to classical music raises IQ. However, multiple attempted replications have shown that this is at best a short-term effect (lasting no longer than 10 to 15 minutes), and is not related to IQ-increase.


Health
Health is important in understanding differences in IQ test scores and other measures of cognitive ability. Several factors can lead to significant cognitive impairment, particularly if they occur during pregnancy and childhood when the brain is growing and the blood–brain barrier is less effective. Such impairment may sometimes be permanent, sometimes be partially or wholly compensated for by later growth.
Since about 2010, researchers such as Eppig, Hassel, and MacKenzie have found a very close and consistent link between IQ scores and infectious diseases, especially in the infant and preschool populations and the mothers of these children. They have postulated that fighting infectious diseases strains the child's metabolism and prevents full brain development. Hassel postulated that it is by far the most important factor in determining population IQ. However, they also found that subsequent factors such as good nutrition and regular quality schooling can offset early negative effects to some extent.
Developed nations have implemented several health policies regarding nutrients and toxins known to influence cognitive function. These include laws requiring fortification of certain food products and laws establishing safe levels of pollutants (e.g. lead, mercury, and organochlorides). Improvements in nutrition, and in public policy in general, have been implicated in worldwide IQ increases.
Cognitive epidemiology is a field of research that examines the associations between intelligence test scores and health. Researchers in the field argue that intelligence measured at an early age is an important predictor of later health and mortality differences.

High IQ societies
There are social organizations, some international, which limit membership to people who have scores as high as or higher than the 98th percentile (2 standard deviations above the mean) on some IQ test or equivalent. Mensa Internationalis perhaps the best known of these. The largest 99.9th percentile (3 standard deviations above the mean) society is the Triple Nine Society.